Presenting Regression Analyses in R: Part 2
Effect sizes and diagnostics

Kevin Donovan

April 16, 2021

Introduction

missing
Tidyverse

Correlation analyses

Correlation analyses

\[ \text{Cor}(X,Y)=\frac{\text{Cov}(X,Y)}{\text{Var}(X)\text{Var}(Y)} \]

Group differences

\[ T=\frac{\bar{X_1}-\bar{X_2}}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim \text{T}_{(n_1+n_2-2)} \]

\[ F=\frac{\text{between-group variance}}{\text{within-group variance}} \sim \text{F}_{(K-1, N-K)} \]

Group differences

\[ d=\frac{\bar{X_1}-\bar{X_2}}{s_p} \]

Group differences

\[ \begin{align} &f^2=\frac{\eta^2}{1-\eta^2} \\ &\text{ where } \eta^2=\frac{SS_{group}}{SS_{total}}=\frac{SS_{group}}{SS_{group}+SS_{error}} \end{align} \]

missing

Summary statistics

Summary statistics in regression

\[ \begin{align} &MSEL = \beta_0+\beta_1*I(Group=\text{HR-ASD})+\beta_2*I(Group=\text{HR-Neg})+\epsilon \\ & I(Group=\text{x}) \text{ is dummy variable for group x} \\ & \rightarrow \text{LR is reference group} \end{align} \]

\[ \begin{align} &H_0: \mu_{LR}=\mu_{HR-ASD}=\mu_{HR-Neg} \leftrightarrow\\ &H_0: \beta_0=\beta_0+\beta_1=\beta_0+\beta_2 \leftrightarrow\\ &H_0: \beta_1=\beta_2=0 \end{align} \]

Summary statistics in regression

\[ MSEL = \beta_0+\beta_1*I(Group=\text{HR-ASD})+\beta_2*I(Group=\text{HR-Neg})+\beta_3*TCV +\epsilon \]

\[ \begin{align} &SS_{total}=\sum_{i=1}^{n}(y_i-\bar{y})^2 \\ &SS_{error}=\sum_{i=1}^{n}(\epsilon_i)^2 \end{align} \]

Summary statistics in regression

\[ MSEL = \beta_0+\beta_1*I(Group=\text{HR-ASD})+\beta_2*I(Group=\text{HR-Neg})+\beta_3*TCV+\beta_4*Age+\delta_{0,i}+\delta_{1,i}*Age +\epsilon \]

Regression diagnostics

Regression diagnostics

Customized visualizations